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Lie algebraic method is based on the idea of dynamic symmetry, which can be expressed in terms of U(2) Lie algebra. By 
applying algebraic techniques, an effective Hamiltonian operator can be obtained which conveniently describes the 
rovibrational degrees of freedom of the physical system. In this framework every C-C bond of the molecule is replaced by a 
corresponding Lie algebra and finally the Hamiltonian is constructed considering the interacting Casimir and Majorana 
operators. The fundamental stretching vibrational energy levels of Polymer Phases of C70C8H8 are then calculated using this 
Hamiltonian to fit the experimental results.  
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1. Introduction 
 

After the discovery of Fullerene, spectroscopic 

analysis of polyatomic molecules becomes one of the 

active areas of research in modern physics from many 

standpoints. Due to its numerous connections with other 

scientific areas, this branch is playing an essential role in 

both experimental and theoretical approaches to 

understand a huge number of important problems. Being 

fueled by the rapid development of sophisticated 

experimental approaches, at present, molecular 

spectroscopy is going through an essential change of 

renewed interest. Better  initial-state  preparation,  

improved  light  sources  and  specially  designed  

pumping  schemes,  and  more  sensitive  detection  

techniques  are  providing  ever-improved  resolution  and  

a  wider  range  of  accessible  final  states. 

In  recent  years  the  molecular  spectroscopy  is  

undergoing  a  change  in different direction.  One  

example  of  the  changing  attitudes  is  the  increasing  

concern  with  time  evolution. The  time-energy  

uncertainty   relation   and   the   pursuit   of   higher  

resolution  means  that  traditional  spectroscopy  is  

implicitly  equivalent  to  the  study  of  the  stationary  

states  determined  by  the  long-time  limit  of  the  

intramolecular  dynamics. The  recent  increasing  interest  

in  the  role  of  anharmonicities  and  resonance  couplings  

made  unavoidable  by  the  study  of  higher-lying  

rovibrational  states  and  the  experimental  reality  of  

avoiding  inhomogeneous  broadening [1] makes  the  

entire  time  domain  of  direct  interest  to  spectroscopists 

[2].  

The formalism in modern spectroscopy discusses both 

level structure beyond harmonic limit and corresponding 

dynamics. A Hamiltonian is thus unavoidable since it is 

the generator of time evolution.  There needs a practical 

method for the determination of the eigen values of the 

Hamiltonian. In case of traditional Dunham-like 

expansion, the spectra are well approximated by a small 

number of constants for the simple molecule. But for 

larger molecules it is still not practicable to compute the 

required potential with sufficient accuracy.  It is therefore 

often approximated using convenient functional forms. 

Not too far from deep equilibrium point, the potential is 

expanded in term of displacement coordinates relative to 

equilibrium configuration. 

In the traditional approach, based on 

integrodifferential techniques, the molecular Hamiltonian 

is parameterized in terms of internal coordinates [3]. Here, 

the potential is modeled in terms of force field constants 

either through complex calculations involving the 

molecular electronic energy for several configuration [4] 

or experimentally, by fitting of spectroscopic data [5]. 

Although for diatomic molecules very accurate 

information on force fields is now available [6], this is not 

the case for polyatomic molecules where the knowledge of 

force fields are poor due to the large number of force 

constants. The potential may also be modeled by 

representing the anharmonicity of the bonds, as a first 

approximation, by a sum of anharmonic Hamiltonians; 

among these the Morse potential is the most commonly 

used [7].      

In this approach, the molecular rotation-vibration 

spectrum is provided by the Dunham expansion [8, 9]. 

This is an expansion of energy levels in terms of vibration-

rotation quantum numbers. For diatomic molecules, the 

expansion is 
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The coefficients 
ijy  are obtained by a fit to the 

experimental energy levels. But in this approach, there is 

no Hamiltonian operator is available, one needs a large 

number of parameters for polyatomic molecules (obtained 

by fitting large experimental data base) which is not 

always available and this expansion does not contain any 

information about the wave function of individual states. 

Thus the matrix elements of operators can not be 

calculated directly.  

The second approach, called potential approach 

provides more sophisticated analysis. Here, energy levels 

are obtained by solving the Schrödinger equation with an 

interatomic potential. The potential V is expanded in terms 

of interatomic variables. For diatomic molecules, the 

possible expansion is [10]  
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The coefficients na are obtained by a fit to the 

experimental energy levels. The solution of the 

Schrödinger equation also provides wave function  ( )r  

from which matrix elements of various operators can be 

calculated. In this approach, all manipulations are either 

differentiations or integrations.  

The third approach to analyze molecular rotation-

vibration spectra is based on the algebraic techniques. The 

success of the Interacting Boson Model of Arima and 

Iachello [11, 12] has stimulated new interest in the study 

of many body systems governed by algebraic Hamiltonian. 

The algebraic Hamiltonian is written in terms of boson 

creation and annihilation operators characterizing the 

normal modes of the system. Contrary to potential 

approach, all manipulations are algebraic. The technical 

advantage of an algebraic approach is the comparative 

ease of algebraic operations. However, the result obtained 

by comparison with experiment is equally important. 

Another important advantage of this approach is that entire 

class of molecules can be described by general form of 

algebraic Hamiltonian where only the parameters are 

different for different molecules. The algebraic (or matrix) 

formulation of quantum mechanics is less familiar than 

differential (or wave) formulation. For diatomic 

molecules, the solution of Schrödinger equation with 

interatomic potential is very simple, thus, algebraic 

approach is not very much useful in application in 

diatomic molecules. But, in case of tri-atomic and 

polyatomic molecules, the algebraic approach gives very 

useful results in a simplified manner. The formalism 

necessary to analyze experimental data has been 

developed in two ways; (i) in the first case, the rotations 

and vibrations are treated together and the full three 

dimensional space of coordinates, r and momenta p, is 

quantized with boson operators, giving rise to Lie algebras 

of U(4) [13–15] and products thereof [16,17] (ii)  in the 

second case, rotations and vibrations are treated separately 

and each one dimensional space of coordinates x and 

momenta  px, is quantized with boson operators, leading to 

one dimensional Lie algebras U(2) and products thereof 

[18,19]. 

In the last few years, Lie algebraic method has been 

introduced as a computational tool for the analysis and 

interpretation of experimental rovibrational spectra of 

small and medium-size molecules [13, 14]. This method is 

based on the idea of dynamic symmetry, which, in turn, is 

expressed through the language of Lie algebras. By 

applying algebraic techniques, one obtains an effective 

Hamiltonian operator that conveniently describes the 

rovibrational degrees of freedom of the physical system. 

Within this framework, any specific mechanism relevant 

to the correct characterization of the molecular dynamics 

and spectroscopy can be accounted for. The algebraic 

methods are formulated in such a way that they contain the 

same physical information of both ab initio theories (based 

on the solution of the Schrödinger equation) and of semi 

empirical approaches (making use of phenomenological 

expansions in powers of appropriate quantum numbers). 

However, by employing the powerful method of group 

theory, the results can be obtained in a more rapid and 

straightforward way. 

 Iachello, Arima [20] and Wulfman [21,22] have 

played a significant role in the algebraic approach to 

molecules. Wulfman is the pioneer who reported on the 

algebraic approach to molecules (the approach to the 

Morse oscillator) in 1979. Later, in 1981 Iachello used Lie 

algebraic methods in a systematic study of the spectra of 

molecules (the vibron model). This introduction was based 

on the second quantization of the Schrödinger equation 

with a three-dimensional Morse potential and described 

the rotation-vibration spectra of diatomic molecules [13, 

14] and polyatomic molecules [18]. Besides these, Lie 

algebraic approach has also been successfully analyse the 

vibrational spectra of many medium and large sized 

molecules. A brief review work of Iachello et. al. [23]
 

reflects the scenario of the field up to 2002 along with the 

perspectives for the algebraic method in the first decade of 

the 21
st 

century. Recently, Using Lie algebraic method 

Sarkar et. al. [24-27] reported better results for the 

vibrational energy levels of HCN, HCCF, HCCD, SnBr4, 

than those reported earlier. Moreover, The U(2) algebraic 

model was also particularly successful in explaining 

stretching vibrations of polyatomic molecules such as 

octahedral, benzene and Pyrrole-like molecules [28,29]. 

Recently, we have reported [30-32] the vibrational spectra 

of polyatomic fullerenes C70 and C80 using Lie algebraic 

method. As such, the approach is particularly appropriate 

for many challenges of modern spectroscopy, hence in this 

paper we used the algebraic model to report a comparative 

study of vibrational infrared frequencies of fullerene 

C70C8H8 with the experimental results [33]. 
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2. The algebraic theory 
 

We use the U(2) algebraic model as an alternative 

approach to the traditional Dunham expansion and 

potential approach for polyatomic molecules. In these 

approaches, the interpretation of experimental data by 

solving Schrödinger equation with interatomic potentials 

becomes increasingly difficult as the number of atoms in 

the molecule increases. The motivation behind this 

algebraic model is the isomorphism of the one dimensional 

lie algebra, U(2), with that of the one dimensional Morse 

oscillator, which is a good description of a stretching 

vibration of a molecule. The Hamiltonian of the one 

dimensional Schrödinger equation with Morse potential is 

 

                h(p, x) =
2

2p
+D[1-exp(- x)]

2
                                 (3) 

 

It can be put into one-to-one correspondence with the 

representation of the algebra U(2)  O(2) characterized 

by the quantum numbers mN ,  with the provision that 

one takes only the positive branch of m, i.e., m = N , N - 1, 

N – 2,….., 1 or 0 for N = odd or even (N = integer). 

However, to have complete description of molecular 

vibrations we need both stretching and bending modes. 

This is achieved by considering the isomorphism of U(2) 

Lie algebra with the solution of Schrödinger equation with 

another potential called Poschl-Teller potential. This 

potential is very much applicable for calculating bending 

vibrations where Morse potential is not appropriate. The 

eigen states of Schrödinger equation with Poschl-Teller 

potential is 

h(p, x) = 
2

2p
-

x

D

2cosh
                        (4) 

 

It can also be put into one-to-one correspondence with 

the representation of U(2)  O(2), characterized by the 

quantum numbers mN ,  with the provision that one 

takes only the positive branch of m, i.e., m = N, N -1, N - 

2……, 1 or 0 for N = odd or even (N = integer). 

In this study we considered only the stretching 

vibration of the polyatomic molecule C70C8H8 using the 

Morse potential. Thus the Hamiltonian corresponding to 

the Morse potential on the basis of U(2) algebra is given 

by  

                           H = εo + AC                                   (5)
  

Where C is the invariant operator of O(2), with eigen 

values (m
2
-N

2
). So, the eigen Values of H are 

 

                                    22
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Where  1,.........2,  NNm  or 0 (N = Integer) and A 

is the normalization constant. 

Introducing the vibrational quantum number    ν = (N-

m)/2, one can write the eigen value as   

                        2

0 4 vNvAE                    (7)
 

 

with ν = 0,1,……….N/2 or (N-1)/2 (for N = even or odd )  

The values of  0 , A and N are given in terms of   , 

D  and   by using the following relations 

 

D0 ,     2/1
/24  DhNA  ,      

 2/4 22hA   

 

One can verify that these are the eigen values of the 

Morse oscillator. 

According to the algebraic theory [34-36], polyatomic 

molecules consists of the separate quantization of rotations 

and vibrations in terms of vector coordinates r1,r2,r3,…. 

quantized by the algebra 
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We introduce U(2) Lie algebra to describe n stretching 

bonds (C-C). The two possible chains of molecular 

dynamical groups in these molecules are      
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1
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n
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1
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n
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U
1
(2) ……  U

n
(2)   U(2)   O(2)        (9) 

 

which correspond to local and normal coupling 

respectively. The coupling to final O(2) group in the first 

chain is carried out though different intermediate 

couplings O
ij
(2) and the second chain arises from all the 

possible couplings of U
i
(2)groups to obtain a total U(2) 

group, which in turn contains the final O(2) group [37]. 

For these two situations the Hamiltonian operator can be 

diagonalized analytically. The common algebraic model 

Hamiltonian in the case of stretching for these molecules 

can be considered as [24] 
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where iC , ijC  and ijM  are the algebraic operators. In the 

local basis the operators iC ’s are diagonal matrix with 

eigen values 

 

 2
4,, iiiiiiii vvNvNCvN   

 

The couplings between the bonds are introduced by 

the operators ijC and ijM  called Casimir and Majorana 

operators respectively. The Casimir operator has only the 

diagonal matrix element, where as the Majorana operators 

have both diagonal and non-diagonal matrix elements, 

which are given by 
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Thus the eigen values of the Hamiltonian can be 

easily evaluated which provide a description of n coupled 

anharmonic vibrators. 

 

 

3. Result and discussion 
 

In the algebraic theory, we introduce the vibron 

number N which is directly related to the anharmonicity of 

local stretching bonds. The quantum numbers vi 

corresponds to the number of quanta in each oscillator, 

while V is the total vibrational quantum number given by 

      V=


n

i

iv
1

         

                                                                  (11) 

For a particular polyad, the total vibrational quantum 

number is always conserved.  

The value of vibron number N can be determined by 

the relation [38] 

                    1
ee

e

x
N




                            (12) 

Where, e and ee x are the spectroscopic constants of 

diatomic molecules of stretching interaction of the 

molecule considered. The value of N has to be taken as the 

initial guess. Depending on the specific molecular 

structure one can expect a change of 20% of the value of 

N. 

The value of the parameter A can be obtained from 

the single-oscillator fundamental mode as  

 

                           141  NAvE              (13) 

 

Lastly, one has to obtain an initial guess for the 

parameters and   of the Majorana operators, the role 

of which is to split the degenerate local modes and the 

value of the parameters can be calculated by considering 

the matrix structure of the molecules. To obtain an initial 

guess for the parameter  and , we consider the 

following Hamiltonian matrix structure of the molecule 
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       One can easily find,                
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 By using a numerical fitting procedure [in a least 

square sense] one can adjust the values of the parameters 

N, A, ,   and A (whose initial value can be taken as 

zero) to fit the experimental result. 

The fitting parameters used in the study of vibrational 

spectra of fullerene C70C8H8 is given in Table 1. 

 

 

Table 1. Fitting parametersa of Fullerene C70C8H8. 

 

Vibron number Stretching parameters 

N A     

140 - 0.9586 0.1143  0.0095 

a A,  ,   all are in cm-1 whereas N  is dimensionless. 

 

Table 2. Calculated and experimental energies (cm-1)  

of fullerene C70C8H8. 

 

Normal 

level 

Experimental[Ref.25] Calculated  (Expt-

Cal) 

v1 533 532.98 +0.02 

v2 541 540.96 +0. 04 

v3 565 564.99 +0.01 

v4 569 568.98 +0.02 

v5 578 578.28 -0.28 

v6 582 582.32 -0.32 

v7 641 640.96 +0.04 

v8 647 646.32 +0.68 

v9 671 670.24 +0.76 

v10 676 676.99 -0.99 

v11 763 763.66 -0.66 

v12 776 775.67 +0.33 

v13 794 794.33 -0.33 

v14 1086 1085.63 +0.37 

v15 1132 1131.30 +0.70 

v16 1154 1153.95 +0.05 

v17 1190 1189.99 +0.01 

v18 1202 1201.96 +0.04 

v19 1217 1217.96 -0.96 

v20 1413 1412.69 +0.31 

v21 1427 1427.36 -0.36 

v22 2964 2963.63 +0.37 

Calculated  (r.m.s) = 0.466 cm-1 (by Lie algebraic method) 
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4. Conclusion 
 

In this article we have studied the stretching 

vibrational IR spectra of Polymer Phases of C70C8H8 by 

the algebraic model considering coupled one dimensional 

Morse oscillators describing the C-C stretching vibrations 

of the molecules. This study shows that the model can 

provide, without much effort and in a readily available 

standardized form, a simultaneous description of 

stretching vibrations with good rms accuracies with the 

experimental result. At the same time, the hurdle of 

complicated integrations in the solution of coupled 

differential Schrödinger equations of polyatomic 

molecules can also be avoided by making use of this 

algebraic model. Moreover the number of parameters in 

this case is also much less as compared to the traditional 

Dunham expansion calculations. So with the further 

advancement of this U(2) algebraic model, the other 

modes of vibrations of the molecule  also can be explained 

and predicted for the interest of further experimental 

study. 
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